Characteristics of Sedimentary Rocks

- Deposited at the earth's surface by wind, water, glacier ice, or biochemical processes
- Typically deposited in strata (layers) under cool surface conditions. This is in contrast to stratified volcanic rock (tuff), which has a hot origin.

Types of Sedimentary Rock

- Clastic: made up of CLASTS (broken-off particles) and CEMENT (typically calcite, quartz, or hematite)
 - Examples: sandstone, siltstone, conglomerate
- Chemical/Biochemical: deposited by inorganic means such as precipitation or evaporation (commonly consisting of one mineral), or originated through the activity of living organisms
 - Examples: limestone, chert

Weathering

- Weathering: changes that take place in a rock exposed at the earth's surface
- Mechanical Weathering: breaking larger pieces into smaller pieces (clasts), with no change of chemical composition
- Chemical Weathering: original minerals partially dissolve, and new minerals form that are more stable at the lower temperature and pressure, and more moist environment at the earth's surface.

Transportation and Deposition

- Clastic sediment: clasts are transported by wind, moving water, glaciers, and/or gravity.
 - Clasts are deposited when the transport energy is not sufficient to move the particles. As transport energy diminishes, the larger particles are deposited first.
- Chemical sediment: dissolved ions are precipitated from solution by biological activity, chemical change, or evaporation.

Energy of Environment

- **High-energy** environments can carry both large and small particles. Typically the conditions are catastrophic (landslide, flood).
- Low-energy environments (lake, deep ocean) can carry only small particles.

Texture (clastic rocks only)

- Particle size
 - Clay (very fine-grained): <1/256 mm
 - Silt (fine-grained): 1/256 to 1/16 mm
 - Sand (medium-grained): 1/16 to 2 mm
 - Pebbles (coarse-grained): >2 mm
- Particle size indicates the energy of the transporting medium. Larger grain size: more energy needed.
- Cement: calcite, quartz, or hematite cement is common.

Maturity of Clastic Sediment

Note: maturity does not refer to "older" or "younger" rock.

• Textural maturity:

- Angularity: well rounded, subrounded, angular
- Sorting: well sorted (all particles the same size), poorly sorted (different sizes together)
- The longer the time and distance of transportation, the better the rounding and the degree of sorting.
- Mineralogical maturity: (Goldich's Weathering Series)
 - Removal of clay
 - Presence of feldspar indicates immaturity.
 - Quartz is most resistant to chemical weathering.

[Schematic cross section]			
Near to source (coarser, more angular, more poorly sorted particles)	Transport of clastic particles ——		Distant from source (finer, more rounded, better sorted particles)
Granite sediments source rock			(clastic sediment)
Distance from source	Near —		→ Far
Energy of environment of deposition	High —		→Low
Size of the largest transported particle (related to energy)	Large —		→ Small
Angularity vs. roundness	Angular (sharp corners ———and edges)	→ Rounded	
Degree of sorting	Poor (wide range — of particle sizes)		Good (narrow range of particle sizes)
Minerals present	Both stable (e.g., quartz) and unstable (e.g., feldspar)	Chiefly stable (e.g., quartz)	Stable (e.g., clay derived from weathered feldspar)
Maturity	Immature —		→ Mature
Examples	Breccia, arkose, conglomerate	Quartz sandstone, siltston	ne Mudstone, shale

Sedimentary Structures, Misc.

- Bedforms created by the agent of transportation
 - Stratification: horizontal layering at time of deposition
 - Symmetrical ripples: wave action
 - Asymmetrical ripples: wind or flowing water, indicating direction of current flow
 - Crossbeds: internal layering at an angle inside a stratum (lee side of a ripple, or lee side of a sand dune)
 - Mud cracks: develop in fine-grained sediment exposed to drying for an extended period.
- Coquina
- Evaporation of sea water: first calcite, then gypsum, then halite precipitating in a sequence

Chemical/Biochemical Rocks

- **Limestone** (CaCO₃) formed by precipitation of calcite. Mostly in marine environments, comprised of the shells of dead organisms
- **Dolomite** [Ca,Mg (CO₃)] formed as Mg partially replaces Ca in limestone
- **Gypsum** (CaSO₄·2H₂O) and **Halite** (NaCl) precipitated as sea water evaporates
- Chert (SiO₂) altered microscopic shells of silicasecreting organisms
- Coal (mostly C) altered plant remains

Sedimentary Rocks

- **DIAGENESIS**: physical and chemical changes occurring in sediment after deposition
- Diagenesis includes compaction, and cementation of loose sediment into coherent rock.
- Diagenesis takes place at much lower temperatures than metamorphism.